|
In communications and electronic engineering, a transmission line is a specialized cable or other structure designed to carry alternating current of radio frequency, that is, currents with a frequency high enough that their wave nature must be taken into account. Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas, distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses. This article covers two-conductor transmission line such as parallel line (ladder line), coaxial cable, stripline, and microstrip. Some sources also refer to waveguide, dielectric waveguide, and even optical fibre as transmission line, however these lines require different analytical techniques and so are not covered by this article; see Waveguide (electromagnetism). ==Overview== Ordinary electrical cables suffice to carry low frequency alternating current (AC), such as mains power, which reverses direction 100 to 120 times per second, and audio signals. However, they cannot be used to carry currents in the radio frequency range or higher, which reverse direction millions to billions of times per second, because the energy tends to radiate off the cable as radio waves, causing power losses. Radio frequency currents also tend to reflect from discontinuities in the cable such as connectors and joints, and travel back down the cable toward the source.〔 These reflections act as bottlenecks, preventing the signal power from reaching the destination. Transmission lines use specialized construction, and impedance matching, to carry electromagnetic signals with minimal reflections and power losses. The distinguishing feature of most transmission lines is that they have uniform cross sectional dimensions along their length, giving them a uniform ''impedance'', called the characteristic impedance,〔 to prevent reflections. Types of transmission line include parallel line (ladder line, twisted pair), coaxial cable, stripline, and microstrip. The higher the frequency of electromagnetic waves moving through a given cable or medium, the shorter the wavelength of the waves. Transmission lines become necessary when the length of the cable is longer than a significant fraction of the transmitted frequency's wavelength. At microwave frequencies and above, power losses in transmission lines become excessive, and waveguides are used instead,〔 which function as "pipes" to confine and guide the electromagnetic waves.〔 Some sources define waveguides as a type of transmission line;〔 however, this article will not include them. At even higher frequencies, in the terahertz, infrared and light range, waveguides in turn become lossy, and optical methods, (such as lenses and mirrors), are used to guide electromagnetic waves.〔 The theory of sound wave propagation is very similar mathematically to that of electromagnetic waves, so techniques from transmission line theory are also used to build structures to conduct acoustic waves; and these are called acoustic transmission lines. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Transmission line」の詳細全文を読む スポンサード リンク
|